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Land use based climate mitigation strategies

U.S. GHG Emissions and Sinks by Sector (MMT CO2 Eq.)
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Land use based climate mitigation strategies

U.S. GHG Emissions and Sinks by Sector (MMT CO2 Eq.)
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Land use planning for climate mitigation is a
scaling problem with hard constraints

For example, just electricity alone...

Technological scale (the scale of transformation): 2000 Williams et al. 2014; 80% below 1990 by 2050
Large scale deployment of technologies have land -
use requirements and consequences that need to 3,000 .
- - - .
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South Dakota
land area:
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Land use planning for climate mitigation is a
scaling problem with hard constraints

For example, just electricity alone...

Technological scale (the scale of transformation): 2000 Williams et al. 2014; 80% below 1990 by 2050
Large scale deployment of technologies have land -
use requirements and consequences that need to 3,000 .
.. . U
be anticipated and effectively managed. , B . .
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1,500 PV —
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Onshore ~750,000 MW 500
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B Onshore Wind Offshore Wind B Biomass

= 100,000 km?

...not including
é? - transportation fuel from bioenergy
- additional area reforested?
- acres of farmland under improved management?

Virginia
land area:
102,547 km?




Land use planning for climate mitigation is a
scaling problem with hard constraints

Geographic scale (the area of transformation):
Multiple competitors means multiple Solar PV
technologies, policies, market tools need to be
leveraged or transferred over large jurisdictional
areas.

Lopez et al. 2012
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Land use planning for climate mitigation is a
scaling problem with hard constraints

Geographic scale (the area of transformation):

Multiple competitors means multiple

technologies, policies, market tools need to be
leveraged or transferred over large jurisdictional

areas.
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Land use planning for climate mitigation is a
scaling problem with hard constraints

Mean annual C sequestration rate per tree
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Time scale (the timing of transformation): Forest
growth rates peak then slow, so forest aging is a
significant driver of sequestration. Power plant
and high-voltage transmission lines construction Years(age)
can have significant lead times (5-10 yrs).
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Land use planning for energy and biodiversity
a case example of planning for n=2 factors

Wind turbines in the Mojave desert outside the main area of the Tehachapi corridor in
California. © lan Shive

Senate Bill 350 increases
California’s renewable
electricity procurement
goal from 33% by 2020 to
50% by 2030.

This will increase the use of
Renewables Portfolio Standard
(RPS) eligible resources,
including solar, wind, biomass,
geothermal, and others.

11



Land use planning for energy and biodiversity
a case example of planning for n=2 factors

Increasing protection of areas with conservation value
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Land use planning for energy and biodiversity
a case example of planning for n=2 factors
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Managing multiple land use factors

Multi-criteria Analysis for A £ i 8
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How could we approach sustainable land use
planning for n = 4+ objectives?

s Al 41



Backcasting sustainable land use pathways

Alternative pathways to Set targets
achieving targets 2050

2. Evaluate trade-offs
3. Identify possible

technology, policy,
market solutions

4. Construct pathways
2017

§. Evaluate pathways

| | using decision-
Decision-scope of policymakers i tri
and technological limitations Making metrics



Backcasting sustainable land use pathways

2050 X. Settargets

- Habitat protected

or restored
- Land and forest
based carbon
sequestration
- Crop production
- Energy production



Backcasting sustalnable land use pathways
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Backcasting sustainable land use pathways

Table 1. U.S. Greenhouse Gas Emissions in 1990 and 2012, with 2050 Target

1990 2012 2050 Target

MtCO2, MtCO2, MtCO2,
CO, from fossil 4745 5066 750
fuel combustion
Fossil fuel CO, 19.0 16.1 1.7
per capita
Gross other GHG 1485 1435 1309
emissions
Land use and -831 -979 -979
forestry sink
Net GHG 5399 5522 1080
emissions

Data source for 1990 and 2012 emissions: iUS EPA, 2014;

DDPP Williams et al. 2014

2050

2050

1.

Set targets
Habitat protected
or restored

Land and forest
based carbon
sequestration

- Crop production

- Energy production
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Backcasting sustainable land use pathways

World ag production and use, major products
(million tonnes)
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Backcasting sustainable land use pathways
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Backcasting sustainable land use pathways

2. Evaluate trade-offs

and synergies
Synergies ynergs

3 . | ;
a) Biodiversity only % b) Carbon only 4 c) Agriculture only ( d) Urban 4

Priority
I Top 10% [ Bottom 30-50%
B Top10-30% B Bottom 30-10%
1 Top 30-50% Ml Bottom 10%

Moilanen et al. 2011
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Backcasting sustainable land use pathways

SECONDARY
OBJECTIVE

Carbon

Energy

PRIMARY OBJECTIVE

Energy

Agriculture

Conser-
vation

Conser-
vation

3, Identify possible
technology, policy,
market, or
management
sustainability solutions
to meet targets



Backcasting sustainable land use pathways
3, Identify possible

SECONDARY
OBJECTIVE

Carbon

Energy

PRIMARY OBJECTIVE

Energy

Agriculture

Conser-
vation

Conser-
vation

technology, policy,
market, or
management
sustainability solutions
to meet targets

Reforestation policies
Harvest management
Carbon credits
Timber markets



Backcasting sustainable land use pathways
3, Identify possible

SECONDARY
OBJECTIVE

Carbon

Energy

PRIMARY OBJECTIVE

Energy

Agriculture

Conser-
vation

Conser-
vation

technology, policy,
market, or
management
sustainability solutions
to meet targets

Improved land use efficiency via:
* Higher hub heights for wind
* Co-locating wind and solar
Regulatory or market incentives
to repowering aging sites



Backcasting sustainable land use pathways

SECONDARY
OBJECTIVE

Carbon

Energy

Agriculture

Conser-
vation

PRIMARY OBJECTIVE

Energy

Conser-
vation

3, Identify possible
technology, policy,
market, or
management
sustainability solutions
to meet targets

* Yield improvements via
Soil improvement
* lIrrigation
Integrated pest
management



Backcasting sustainable land use pathways

SECONDARY
OBJECTIVE

Carbon

Energy

PRIMARY OBJECTIVE

Energy

Agriculture

Conser-
vation

Conser-
vation

3, Identify possible
technology, policy,
market, or
management
sustainability solutions
to meet targets

 Habitat restoration
* Increase extent of protected
areas



Backcasting sustainable land use pathways

SECONDARY
OBJECTIVE

Carbon

Energy

PRIMARY OBJECTIVE

Energy

Agriculture

Conser-
vation

Conser-
vation

Solutions that actively manage trade-offs

3, Identify possible
technology, policy,
market, or
management
sustainability solutions
to meet targets

* Notill agriculture

* Precision agriculture to minimize
N inputs

* Rotational or mixed cropping



Backcasting sustainable land use pathways
3, Identify possible

SECONDARY
OBJECTIVE

Carbon

Energy

Agriculture

Conser-
vation

PRIMARY OBJECTIVE

Energy

Conser-
vation

Solutions that actively manage trade-offs

technology, policy,
market, or
management
sustainability solutions
to meet targets

Co-locating pastureland or
cropland with wind or solar
farms

Growing purpose-grown
biomass on marginal land



Backcasting sustainable land use pathways

SECONDARY
OBJECTIVE

Carbon

Energy

PRIMARY OBJECTIVE

Energy

Agriculture

Conser-
vation

Conser-
vation

Solutions that actively manage trade-offs

3, Identify possible
technology, policy,
market, or
management
sustainability solutions
to meet targets

* Conservation Reserve Program



Backcasting sustainable land use pathways

Integrated Assessment Models (e.g., GCAM)
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Wise et al. 2009 (MiniCAM example; updated to GCAM)

Top down

4. Construct pathways

Sequential land allocation (optimization)
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Bottom up

More endogenously determined

More exogenously determined



Backcasting sustainable land use pathways

§. Evaluate pathways
using decision-making
metrics
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Enabling conditions for pathways analysis
FABLE: Forests, Agriculture, Biodiversity, Land, and Energy

Global pathways between practitioners and
academics
Country 1 pathway Country 2 pathway * Climate
* Agriculture
. ceholder engagement and » Conservation
participation * Energy

e Government

* private-sector
 NGOs land use

land owners planning
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