

Carbon Waste Management

Klaus S Lackner September, 2017

Carbon dioxide piles up like garbage

- Carbon dioxide emissions stay in the atmosphere for centuries
- Warming from carbon dioxide lasts for a millennium
- Excess carbon acidifies the ocean for millennia

Moving to a waste management paradigm represents a big shift in dealing with CO₂ Reduce, Reuse, Recycle + DISPOSAL Cost of disposal motivates Reuse

Need to convince people and corporations to clean up their CO₂ garbage Create a movement like recycling

The global carbon budget is heading into overdraft

Paris Agreement: hold warming below 1.5°C or at most 2°C

- Promised emissions reductions will reach 4°C, business as usual more than 6°C
- Cannot stop anymore in time

IPCC: need negative emissions

- Pulling CO₂ back from the air
- Storing CO₂ safely and permanently

Major business risk for investors Opportunity for leaders The per capita fuel allotment for 2°C Must last for generations

http://www.emercedesbenz.com/Aug08/08_001327_Mercedes_Benz_Econic_Semi_Trailer_Tanker_Trucks_Enter_Service_At_London_Farnborough_Airport.htm

Technologies for Carbon Management

Carbon Storage

Disposal of excess carbon underground Established technology but not at scale

Point Source Capture

Proven but not widely deployed

• Fuel Synthesis

Converting renewable energy into liquid fuels Based on proven technology, needs scaling

• Direct Air Capture of Carbon Dioxide

Novel technology we have introduced Needs demonstration and scaling

Technology Gap: Direct Air Capture

Need: Closure of carbon cycle via Direct Air Capture (DAC)

• Only Direct air capture can scale to close the carbon cycle through the air

Feasibility: Technology works in submarines, but is still too expensive

- Costs imposed by physics are affordable energy requirement is less than 5% of energy in carbon
- Other technologies have solved more difficult extraction problems Passive collectors can pull uranium out of seawater at reasonable cost (100,000 times more dilute than CO₂ in air)

Cost: Design choices and learning by doing can drive cost down

- Passive device standing in the wind like a windmill minimizes energy and capital costs
- Our moisture swing sorbents trade expensive energy for cheap water
- Mass manufacturing can drive cost down by huge factors

An air collector could capture 100 to 500 times as much CO_2 as is avoided by an equally sized windmill.

Mass production can drastically reduce cost (photovoltaic panels, computers, cars)

Carbon

Air Capture is Real

- Several start-ups have working prototypes
- Different approaches, different markets
- Gaining experience, demonstrating costs
- Establishing a new technology

global thermostat

Research is proceeding at a number of universities ASU, Georgia Tech, Columbia University, ETH Zurich, Sheffield University, Zhejiang University,

Avoiding Sherwood's Rule

Cost of separation scales linearly with dilution D

Sherwood's Rule

The cost of the first step in the separation dominates

SOURCE: National Research Council (1987)

ASU's air capture design

- Passive wind-driven design avoids Sherwood's objection
- Moisture controlled sorbent reduces energy consumption
- Mass production of small units drives costs down

Lessons are applied in a DOE project to feed CO₂ to algae

How to move to scale?

Mass-produced factory-built one-ton-per-day units

100 million units would eliminate current world emissions

Rely on learning
Mass production approach
Find markets
Small commercial niches
Create value proposition
Value is ultimately derived from cleanup
Waste management paradigm

Technology can reach global scales with proper market incentives

Production Capacity

10 year life time implies a production capacity of 10 million per year

World car and light truck production: 80 million per year

Shanghai harbor processes 30 million full containers a year

Low cost comes with experience

